Exercise 35

The unemployment rate $U(t)$ varies with time. The table gives the percentage of unemployed in the US labor force from 2003 to 2012.
(a) What is the meaning of $U^{\prime}(t)$? What are its units?
(b) Construct a table of estimated values for $U^{\prime}(t)$.

t	$U(t)$	t	$U(t)$
2003	6.0	2008	5.8
2004	5.5	2009	9.3
2005	5.1	2010	9.6
2006	4.6	2011	8.9
2007	4.6	2012	8.1

Source: US Bureau of Labor Statistics

Solution

$U^{\prime}(t)$ is the rate at which the percentage of unemployed people is increasing with respect to time (units of \%/year). To obtain the values of $U^{\prime}(t)$, calculate the slope of the secant line going through two adjacent t values. At $t=2003$, for example,

$$
U^{\prime}(t)=\frac{U(2004)-U(2003)}{2004-2003}=\frac{5.5-6.0}{1}=-0.50 .
$$

At $t=2004$, there are two secant lines.

$$
\begin{aligned}
& U^{\prime}(t)=\frac{U(2004)-U(2003)}{2004-2003}=\frac{5.5-6.0}{1}=-0.50 \\
& U^{\prime}(t)=\frac{U(2005)-U(2004)}{2005-2004}=\frac{5.1-5.5}{1}=-0.40
\end{aligned}
$$

At such times where there are two possible secant lines, take the average for the best estimate.

$$
\frac{(-0.5)+(-0.4)}{2}=-0.45
$$

t	$U(t)$	$U^{\prime}(t)$
2003	6.0	-0.50
2004	5.5	-0.45
2005	5.1	-0.45
2006	4.6	-0.25
2007	4.6	0.60
2008	5.8	2.35
2009	9.3	1.90
2010	9.6	-0.20
2011	8.9	-0.75
2012	8.1	-0.80

